"We need to have a balanced capability to operate remotely piloted aircraft both in permissive airspace and contested airspace," he says, adding that one of the greatest weaknesses of the fleet is that every platform has to be controlled by an operator on the ground. "Those linkages are vulnerable to jamming. To counter that you need to move toward a greater degree of autonomy, but along with moving to autonomy you’ll encounter a variety of policy issues that when you have a man-in-the-loop you don’t have to worry about that much."
Researchers at ETH Zurich have demonstrated an amazing capability for small robots to self-assemble and take to the air as a multi-rotor helicopter. Maximilian Kriegleder and Raymond Oung worked with Professor Raffaello D’Andrea at his research lab to develop the small hexagonal pods that assemble into flying rafts. (Source)
The core element -- and the most expensive part of the quadcopter -- is a smartphone. Its camera provides the visual data and its processor acts as the control center. The quadcopter's intelligence, which allows it to navigate, was coded in a smartphone-app. In addition, a micro controller adjusts the rotor speed, so that the quadcopter flies as steadily as possible.
The quadcopter was designed to work indoors, even in small rooms. This is a major challenge; especially close to walls or corners, aerodynamics can be much more tricky than in open space. Apart from that, the quadcopter cannot make any use of GPS data, it has to rely entirely on visual data.
To test the quadcopters navigational capabilities, the team attached visual codes to the floor, similar to QR-codes. Hovering above these codes, the quadcopter recognizes them, obtains information and creates a map of its environment. Once it has created a virtual map of the codes on the floor, it can head for a specific known location or go on exploring areas it has not yet checked out.
"In the future, the quadcopter should also be able to do without these codes. Instead, we want it to use naturally occurring reference points, which can be obtained from the camera data and also from depth sensors such as the MS Kinect," says Annette Mossel, chief engineer of the quadcopter project. (Source)
The team plans to test it out in the UH60M Black Hawk helicopter this fall, when they'll demonstrate autonomous cargo pickup and delivery. Next year, the plan is to take Matrix for a flight under brown-out conditions, as well as practice landing on the decks of ships. By the sounds of it, they'll have autonomous VTOLs catching up to fixed-wing drones in no time. (Source)